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ABSTRACT

In this paper the dynamic Smagorinsky model originally developed for engineering flows is adapted for
simulations of the cloud-topped atmospheric boundary layer in which an anelastic form of the governing
equations is used. The adapted model accounts for local buoyancy sources, vertical density stratification,
and poor resolution close to the surface and calculates additional model coefficients for the subgrid-scale
fluxes of potential temperature and total water mixing ratio. Results obtained with the dynamic model are
compared with those obtained using two nondynamic models for simulations of a nocturnal marine stra-
tocumulus cloud deck observed during the first research flight of the second Dynamics and Chemistry of
Marine Stratocumulus (DYCOMS-II) field experiment. The dynamic Smagorinsky model is found to give
better agreement with the observations for all parameters and statistics. The dynamic model also gives
improved spatial convergence and resolution independence over the nondynamic models. The good results
obtained with the dynamic model appear to be due primarily to the fact that it calculates minimal subgrid-
scale fluxes at the inversion. Based on other results in the literature, it is suggested that entrainment in the
DYCOMS-II case is due predominantly to isolated mixing events associated with overturning internal
waves. While the behavior of the dynamic model is consistent with this entrainment mechanism, a similar
tendency to switch off subgrid-scale fluxes at an interface is also observed in a case in which gradient
transport by small-scale eddies has been found to be important. This indicates that there may be problems
associated with the application of the dynamic model close to flow interfaces. One issue here involves the
plane-averaging procedure used to stabilize the model, which is not justified when the averaging plane
intersects a deforming interface. More fundamental, however, is that the behavior may be due to insufficient
resolution in this region of the flow. The implications of this are discussed with reference to both dynamic
and nondynamic subgrid-scale models, and a new approach to turbulence modeling for large-eddy simu-
lations is proposed.

1. Introduction

The popularity of the large-eddy simulation (LES)
technique in atmospheric research is due in part to the

difficulties involved with obtaining sufficient field data
to develop and test theories concerning the structure
and dynamics of the boundary layer. LESs provide
three-dimensional time-evolving velocity and scalar
fields at a resolution limited only by the computational
resources. As such, LES is often used to isolate particu-
lar physical processes of interest, such as boundary
layer entrainment (Stevens et al. 2000) or transition
from one cloud type to another (Wyant et al. 1997). It
is also used to generate databases of different atmo-
spheric flow regimes in order to evaluate, refine, and
develop parameterization schemes for use in large-scale
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models (cf. Lappen and Randall 2001). At the other
end of the spectrum, LES is used as a platform on which
to develop accurate models of cloud microphysics and
radiation (Ackerman et al. 2004).

Despite an increasing reliance on LES as a tool for
developing and testing boundary layer theories, there is
still uncertainty concerning the fidelity of the simula-
tions themselves. While LES has been shown to be rela-
tively robust for simple cases such as simulations of a
clear, convective boundary layer (Mason 1989), model
intercomparisons for more complex cases have shown
large variations in predictions of important statistics
and bulk parameters. In the 1995 Global Energy and
Water Cycle Experiment (GEWEX) Cloud System
Studies (GCSS) Working Group 1 model intercompari-
son, for example, Bretherton et al. (1999) compared
simulations of a smoke cloud beneath a temperature
inversion. In this case, radiative cooling at the top of the
cloud drives convection, which leads to entrainment
and growth of the boundary layer. The authors found
that the entrainment rates and other statistics predicted
by the various LES codes differed by up to a factor of
2. The recent intercomparison of simulations of trade
cumuli by Stevens et al. (2001) is a second example.
Here again, important parameters such as stratiform
cloud fraction and the variance of total water mixing
ratio were found to be sensitive to the choice of nu-
merical method, spatial resolution, and subgrid-scale
turbulence model. Bulk parameters such as boundary
layer height, entrainment rate, liquid water path, and
cloud fraction are important variables in the parameter-
izations used in global circulation models. It is there-
fore essential that LES be made robust in its prediction
of these variables if it is to be used as a tool for devel-
opment and tuning of parameterizations for large-scale
models.

The results of these model intercomparisons indicate
that the difficulties encountered are related predomi-
nantly to the presence of a strong temperature inver-
sion at cloud top, and positive and negative feedback
loops involving turbulent entrainment across the inver-
sion, radiation, and cloud microphysics. These feedback
loops tend to make simulation results very sensitive to
details of the numerics and subgrid-scale model. Con-
sequently, over the past few decades considerable ef-
fort has been devoted to developing subgrid-scale
(SGS) turbulence models that are better able to param-
eterize the physical processes occurring within the
cloud layer. Much of this work has involved taking pa-
rameterizations developed for neutral boundary layers
and deriving corrections to account for buoyancy ef-
fects associated with the background stratification and

local buoyancy sources due to latent heat exchange
within the cloud (cf. Lilly 1962; Deardorff 1980; Mason
1989; MacVean and Mason 1990). In this paper we con-
tribute to this effort by presenting an adaption of the
dynamic Smagorinsky model of Germano et al. (1991)
for atmospheric simulations.

In contrast to other SGS models in which the model
coefficients must be prescribed a priori, dynamic SGS
models compute the model coefficients dynamically
during the simulation itself, using information con-
tained in the resolved flow fields. For this reason, dy-
namic models can be considered self-calibrating, a fea-
ture that makes them an appealing choice for dealing
with the complex interactions between the hydrody-
namics, radiation, and cloud microphysics occurring
within clouds. While dynamic SGS models have been
used with considerable success for complex engineering
flows (cf. Boivin et al. 2000; Branley and Jones 2001),
their application to atmospheric flows has been very
limited. Sullivan and Moeng (1992) tested the dynamic
Smagorinsky model for buoyancy-driven flows and dis-
cussed its application to atmospheric LES. Their for-
mulation for the addition of a buoyancy correction to
the standard dynamic Smagorinsky model uses an it-
erative solution procedure that was found to be com-
putationally expensive and to suffer from stability prob-
lems, requiring the application of additional constraints
to ensure stable convergence. While Sullivan and
Moeng obtained good results for Rayleigh–Bérnard
flow at a low Reynold’s number, tests of their dynamic
model in the atmospheric LES model of Moeng (1984)
gave results that diverged considerably from similarity
theory close to the surface. They concluded that the
dynamic model does not function correctly in this re-
gion because most of the energy is contained in the
subgrid scales.

More recently, Porté-Agel et al. (2000) applied a dy-
namic SGS model to simulations of the clear, neutral
atmospheric boundary layer (ABL). To overcome de-
ficiencies in the standard model close to the surface,
they generalized the dynamic procedure by removing
the assumption that the model coefficient is indepen-
dent of length scale. They found that their “scale-
dependent dynamic model” gives improved results in
the near-surface region. Cederwall (2002) used the
standard dynamic Smagorinsky model in simulations of
the stable, clear ABL. To give appropriate fluxes
through the near-surface layer Cederwall added a
variation of a near-surface model developed by Brown
et al. (2001). Cederwall also calculated the turbulent
Prandtl number dynamically, but did not include an
explicit stability correction in the model. Workers T. S.
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Lund et al. (2004, personal communication) performed
a similar study of a weakly stable boundary layer using
the dynamic Smagorinsky model, but used the mean
eddy viscosity prescription of Sullivan et al. (1994) in
the near-surface region. They claim that effects of sta-
bility are accounted for automatically in the model, so
that there is no need to use “ad hoc stability correc-
tions” or to calculate the turbulent Prandtl number dy-
namically. Esau (2004) performed simulations of Ek-
man boundary layers using the dynamic mixed model of
Zang et al. (1993), and found that this model gives im-
proved performance over the dynamic Smagorinsky
model in the near-surface region. Chow et al. (2005)
applied a dynamic model based on an explicit filtering
approach to simulation of a neutral boundary layer. In
the near-surface region, they used a near-surface model
similar to that used by Cederwall.

The investigations described above all focused on
simulations of the dry ABL and used the Boussinesq
form of the governing equations, which enabled them
to adopt the standard form of the dynamic models de-
veloped for incompressible engineering flows. Of these
studies, only Sullivan and Moeng (1992) attempted
simulations of an unstable boundary layer or attempted
to use a formulation that includes an explicit buoyancy
correction, and those authors do not claim to have ob-
tained satisfactory results.

In this paper we adapt the dynamic Smagorinsky
model for simulations of the cloud-topped ABL using
an anelastic form of the governing equations. Rather
than relying on the dynamic procedure to account for
stability effects, our model includes explicitly the buoy-
ancy correction of Lilly (1962). A similar correction was
used by Sullivan and Moeng (1992); however, we for-
mulate this term in a way that circumvents the need for
iteration and overcomes the stability issues associated
with their formulation. We note here that, contrary to
the assertion of T. S. Lund et al. (2004, personal com-
munication), our tests showed that the inclusion of this
correction gives significant differences in the results.
We also argue that this stability correction is far from
“ad hoc,” as it is derived from a balance between tur-
bulence production and dissipation in the turbulence
kinetic energy (TKE) equation. In our model, eddy dif-
fusivities for each of the scalar variables such as poten-
tial temperature and total water mixing ratio are also
calculated dynamically. As with the stability correction,
preliminary tests showed that calculating these diffu-
sivities dynamically gave significant differences when
compared with simulations in which a constant turbu-
lent Prandtl number was used. The main focus of this
study is on the performance of the dynamic model in
the cloud layer and in particular, close to the tempera-

ture inversion. For this reason, we follow Cederwall
(2002) and Chow et al. (2005) and adopt the relatively
simple near-surface layer model of Brown et al. (2001)
to give the correct transfer of fluxes between the sur-
face and the well-resolved region of the simulation.

Our adapted dynamic model is compared with two
commonly used nondynamic models in simulations of a
nocturnal marine stratocumulus cloud deck observed
during the first research flight of the second Dynamics
and Chemistry of Marine Stratocumulus (DYCOMS-
II) field experiment (Stevens et al. 2003a). One of the
primary aims of this experiment was to characterize the
conditions to such an extent that LESs of the case could
be closely constrained. In 2003, data collected during
the first research flight (RF01) of DYCOMS-II formed
the basis for another GCSS model intercomparison, the
results of which are described by Stevens et al. (2005).
The case was found to be particularly challenging, with
a large variation in the results obtained with different
LES models.

The results presented in this paper were obtained
using an atmospheric LES code developed for bound-
ary layer clouds, the Distributed Hydrodynamic Aero-
sol and Radiation Model Application (DHARMA;
Stevens and Bretherton 1996; Stevens et al. 2000, 2002).
The adapted dynamic SGS model is implemented in
the new LES Length Scale and Model Coefficient Al-
gorithms (LLAMA) code presented here. LLAMA is a
FORTRAN90 module that provides a suite of SGS
models. It is designed to “plug into” existing hydrody-
namics solvers, which may be serial or parallel using
Message Passing Interface (MPI). In addition to the
adaptation of the dynamic Smagorinsky model pre-
sented here, LLAMA also includes an adapted version
of the dynamic mixed model of Zang et al. (1993) and
localized versions of the dynamic Smagorinsky and dy-
namic mixed models, using the localized dynamic pro-
cedure of Piomelli and Liu (1995). A complete descrip-
tion of the SGS models provided by LLAMA is given in
Kirkpatrick et al. (2003).

2. Overview of test case and simulations

The case chosen for the simulations is based on re-
sults obtained during the first research flight of the
DYCOMS-II field experiment. Measurements were
taken in and above a nocturnal stratocumulus-topped
boundary layer situated over the Pacific Ocean off the
west coast of California. Little or no drizzle was re-
corded below the cloud deck during the flight, and pre-
cipitation was limited to droplet sedimentation within
the cloud.

The computational domain extends 3.2 km in the two
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horizontal directions and 1.5 km in the vertical direc-
tion. Simulations are run on a grid with 96 � 96 � 128
cells in the x, y, and z directions, respectively. Cell spac-
ing is uniform in the horizontal directions with cells of
width �x � �y � 33 m and is stretched in the vertical
direction to give cells of height �z � 4.35 m close to the
bottom surface and in the vicinity of the temperature
inversion capping the ABL. These are the same grid
and domain size as those used for the DHARMA simu-
lations presented in the intercomparison referred to
above. To assess the effect of spatial resolution, we also
run simulations on a lower-resolution (64 � 64 � 96)
and a higher-resolution (128 � 128 � 172) grid. The
grid parameters are summarized in Table 1.

The boundary conditions imposed are periodic
boundaries in the horizontal directions, a zero flux con-
dition at the top boundary, and fixed surface fluxes for
all variables at the bottom boundary. Sedimentation of
liquid water is neglected here. The domain coordinates
move with the geostrophic winds to reduce numerical
errors. The spatial discretization is based on the third-
order Modified Utopia (MU) scheme, while time inte-
gration uses a second-order Runge–Kutta scheme
(Stevens and Bretherton 1996). The equations are in-
tegrated over a period of 4 h with analysis performed
for the final 2 h of the simulations. Further details of the
parameters defining the case, including initial condi-
tions and external forcings, along with the results of the
associated GCSS model intercomparison, are described
by Stevens et al. (2005).

3. Governing equations

The dynamics of the cloud-topped atmospheric
boundary layer can be described using equations for
conservation of mass, momentum, liquid water poten-
tial temperature, and total water mixing ratio. These
equations are written in the anelastic form of Ogura
and Phillips (1962) in which the thermodynamic vari-
ables are decomposed into an isentropic base state, cor-
responding to a uniform potential temperature, and a
dynamic component. Following Clark (1979), the dy-
namic component is further decomposed into an initial
environmental deviation in hydrostatic balance and a
time-evolving dynamic perturbation. For example, the
decomposition for pressure is given by

p�x, y, z, t� � p0�z� � p1�z� � p2�x, y, z, t�, �1�

where subscript 0 refers to the isentropic base state,
subscript 1 refers to the initial deviation, and subscript
2 refers to the dynamic perturbation. Similar decompo-
sitions are used for potential temperature and density.

After subtracting hydrostatic balances, the resulting
continuous equations are written as

��0ui

�t
�

���0uiuj�

�xj
� �

�p2

�xi
� �i3g

�0��2

�0
� �ijk�0 fjuk

� Hui
, �2�

��0�*l
�t

�
���0�*l uj�

�xj
� H� l

*, �3�

��0qt

�t
�

���0qtuj�

�xj
� Hqt, and �4�

���0uj�

�xj
� 0. �5�

Here ui are the Cartesian components of the velocity
vector, � is the density, �ij is the Kronecker delta, 	ijk is
the permutation tensor, fj is the Coriolis parameter, g is
the acceleration due to gravity, qt is the total water
mixing ratio, and 
*l � (
l � 
0)/
0 is a scaled liquid
water potential temperature. Total water mixing ratio is
the sum of the liquid and vapor mixing ratios,

qt � qc � q� �
�c � ��

�d
, �6�

where �c, ��, and �d are the mass density of the con-
densed water, water vapor, and dry air, respectively.
Liquid water potential temperature is defined as

�l � � �
L

Cpd�hyd
qc. �7�

Here L is the latent heat of vaporization, Cpd is the
specific heat at constant pressure for dry air, and

�hyd � �p0 � p1

pref
�Rd �Cp

,

with pref being a reference pressure of 1000 mbar and
Rd being the gas constant of dry air. The virtual poten-
tial temperature 
� appearing in the buoyancy term of
the momentum equations is given by

�� � ��1 � �Rd

R�

� 1�q� � qc�, �8�

TABLE 1. Grids used for the simulations: �x, �y, and �z are the
cell dimensions in the x, y, and z directions, respectively. Here �
� (�x�y�z)1/3 is the filter width (see section 4).

Grid �x (��y) �zmin �min

64 � 64 � 96 50.0 6.25 25.0
96 � 96 � 128 33.3 4.35 16.7

128 � 128 � 172 25.0 3.25 12.5
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where R� is the gas constant for water vapor. The terms
Hui

, H
 *l
, and Hqt

are source terms that include param-
eterizations for physical processes such as radiation and
subsidence.

In an LES, the equations are filtered to remove from
the solution the turbulent fluctuations that cannot be
resolved by the numerical method. For the anelastic
equations it is convenient to use a density-weighted or
Favre filter, where a Favre-filtered variable is defined
as �̃ � ��/�. Application of this filter to the equations
gives

��0ũi

�t
�

���0ũiũj�

�xj
� �

�p2

�xi
� �i3g

�0�̃�2

�0
� �ijk�0ũk fj

� Hui
�

��ij

�xj
, �9�

��0�̃*l
�t

�
���0�̃*l ũj�

�xj
� H� l

* �
�	� l

*

�xj
, �10�

��0q̃t

�t
�

���0q̃tũj�

�xj
� Hqt �

�	qt

�xj
, and �11�

���0ũj�

�xj
� 0, �12�

with subgrid-scale stresses and fluxes given by

�ij � �0�uiu
~

j � ũiũj�, �13�

	� l
* � �0��*l u

~
j � �̃*l ũj�, and �14�

	qt
� �0�qtu

~
j � q̃tũj�. �15�

We have assumed here that fj is constant so that the
Coriolis term is linear. The source terms H are shown
without an overbar since they are parameterizations
rather than exact terms.

4. Subgrid-scale models

The most commonly used models for atmospheric
LESs are based on the model first proposed in the early
1960s by Smagorinsky (1963) and Lilly (1962). The sub-
grid-scale stress is written as

�ij
a � �ij �

1
3

�ij�kk � �2�0KmD̃ij, �16�

where D̃ij is the strain rate tensor:

D̃ij �
1
2 ��ũi

�xj
�

�ũj

�xi
� �

1
3

�ij

�ũk

�xk
. �17�

Here and elsewhere in this paper the superscript a is
used to denote the anisotropic part of a tensor. The
eddy viscosity Km is given by

Km � C
2|D̃|CB, �18�

where |D̃| � (2D̃ijD̃ij)
1/2, � is the filter width, approxi-

mated here as � � (�x�y�z)1/3, and C is a dimension-
less coefficient. In the nondynamic versions of the
model this coefficient is a constant parameter and is
often written as the Smagorinsky coefficient cs � C1/2.
Following Mason (1985), the buoyancy correction term
CB is given by

CB � �1 � Ri�Prt�
1�2 Ri�Prt � 1

CB � 0 Ri�Prt � 1,
�19�

where the gradient Richardson number Ri is defined as

Ri �
N2

|D̃|2
, �20�

with the buoyancy frequency N given by

N2 �
g

�0

��̃�

�z
. �21�

In 1980, Deardorff (1980) proposed an additional sta-
bility correction in which the subgrid-scale mixing
length is related to the TKE. While Deardorff origi-
nally used this correction with a prognostic TKE equa-
tion model, we use it here to modify the length scale in
the Smagorinsky model. The new mixing length is writ-
ten as

L � 
c1�1�Ri � 1� � ce1��c2 N2  0,

L � 
 N2 � 0,
�22�

where

c1 � ca�0.762�,

c2 � ce2 � 2c1,

ca � 0.10,

ce1 � 0.19, and

ce2 � 0.51. �23�

The eddy viscosity is then calculated as

Km � c3c�
� 1�2L2|D̃|CB L  0,

Km � 0 L � 0,
�24�

where

c� � ce1 � ce2L�
 and

c3 � ca
3�2. �25�
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In neutral and unstable conditions, this model gives an
eddy viscosity equal to that calculated by the standard
Smagorinsky formulation when the Smagorinsky coef-
ficient is set to cs � 0.19.

In addition to the buoyancy corrections outlined
above, the Smagorinsky model requires further modi-
fication to account for poor spatial resolution of the
flow field close to the surface. For the present work a
damping function (Mason 1994) is applied to the model
length scale in this region. Modeling the turbulence in
the near-surface region is discussed further in section 5.

The distinguishing feature of a dynamic SGS model is
that the model coefficient is not set to a single, fixed
value at the start of the simulation. Instead, the coeffi-
cient is calculated dynamically during the simulation
and can vary in time and space. To achieve this, a test
filter is applied to the velocity and scalar variable fields
to extract information from the smallest resolved
scales. Application of a spatial test filter, denoted here
by a caret (^), to the filtered momentum equations
gives

��0û̃i

�t
�

���0ũiû̃j�

�xj
� �

�p̂2

�xi
� �i3g

�0�̃
^

�2

�0

� �ijk�0û̃kfj � Hui �
��̂ij

�xj
.

�26�

To rewrite this equation in a form similar to Eq. (9) we
adopt a Favre test filter �̆ � ��̂/�̂ giving

��̂0ŭ̃i

�t
�

���̂0ŭ̃iũj�

�xj
� �

�p̂2

�xi
� �i3g

�̂0
˘
�̃�2

�0
� �ijk�̂0ũ̆k fj

� Hui
�

��̂ij

�xj
. �27�

In our case this equation can be simplified considerably
by using a two-dimensional horizontal test filter rather
than a three-dimensional one. The simplification stems
from the fact that the density in our governing equa-
tions varies only in the z direction. A horizontal Favre
test filter is then equivalent to a spatial test filter:

˘
�̃ �

ˆ
�̃, �28�

and the density field is left unchanged by the test-
filtering operation:

�̂0 � �0. �29�

Another advantage of using a horizontal test filter is
that it avoids commutation errors that would occur if
the discrete filter were applied in the vertical direction

where the grid is nonuniform (Ghosal and Moin 1995).
Implicit in this is the assumption that the grid filter is
also two-dimensional (Carati et al. 2001). This is a rea-
sonable assumption in most ABL simulations, where
the horizontal grid dimensions are typically larger than
the vertical dimension.

Applying Eqs. (28) and (29) to Eq. (27) and using the
fact that

�2 �
�0��2

�0
�30�

gives

��0û̃i

�t
�

���0ũiû̃j�

�xj
� �

�p̂2

�xi
� �i3�̂2g � �ijk�0û̃kfj

� Hui
�

��̂ij

�xj
. �31�

Extracting the resolved stress Lij � �0(ũiû̃j � ũ̂iũ̂j) then
gives

��0û̃i

�t
�

���0û̃iû̃j�

�xj
� �

�p2
^

�xi
� �i3�̂2g � �ijk�0û̃kfj � Hui

�
��̂ij

�xj
�

�Lij

�xj
. �32�

Alternatively, application of the grid and test filters
together to the continuous equations gives

��0û̃i

�t
�

���0û̃iû̃j�

�xj
� �

�p2
^

�xi
� �i3�̂2g � �ijk�0û̃kfj

� Hui
�

�Tij

�xj
, �33�

where Tij is the SGS stress at the test filter level:

Tij � �0�uiu~̂
j � û̃iû̃j�. �34�

Comparison of Eqs. (32) and (33) gives the Germano
identity:

Lij � Tij � �̂ij. �35�

The basic assumption underlying the dynamic proce-
dure is that the model used to parameterize the SGS
stress at the grid filter level �ij can also be used to
parameterize the SGS stress at the test filter level Tij,
and that the model coefficient remains the same in both
cases. Using this, the test level stress is written as

Tij
a � �2�0C
̂2|D̃̂|D̃̂ijĈB, �36�
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where ĈB is given by

ĈB � �1 � Rî�Pr̂t�
1�2 Rî�Pr̂t � 1

ĈB � 0 Rî�Pr̂t � 1,
�37�

with the test level Richardson number given by

Ri
^

�
N2̂

| ˆ
D̃|2

�
g��0��̃̂���z

| ˆ
D̃|2

. �38�

In our formulation, the Prandtl number is calculated as
Prt � C/C
, where C and C
 are the model coefficients
calculated for momentum and liquid water potential
temperature during the previous time step. It is reason-
able to use the values from the previous time step be-
cause these coefficients are averaged over horizontal
planes (see below) and vary slowly in time. We note
also that, in our formulation, Pr̂t � Prt since Prt varies
only in the vertical direction and the test filter acts only
in the horizontal directions. This procedure requires no
iteration and was found to be stable for a variety of test
cases.

Substituting the parameterizations for the subgrid-
scale stress �ij [Eq. (16)] and test level stress Tij [Eq.
(36)] into the Germano identity [Eq. (35)] gives

�0�ũiû̃j � û̃iû̃j�
a � �2�0C
̂2| ˆ

D̃| ˆ
D̃ijĈB

� 2�0C
2|D̃|D̃ijCB

^
. �39�

Removing the constant factor �0, contracting tensors
using the least squares approach of Lilly (1992), and
assuming C is constant on horizontal planes then gives
an equation for the model coefficient,

C
2 � �
�MijL*a

ij �

�2MklMkl�
, �40�

where

L*ij � ũiû̃j � û̃iû̃j and �41�

Mij � �2| ˆ
D̃| ˆ

D̃ijĈB � |D̃|D̃ijCB

^
. �42�

Here, � is the ratio of the test and grid filter widths

� � 
̂�
. �43�

The angle brackets indicate averaging on horizontal
planes, which is necessary to stabilize the dynamic pro-
cedure (Germano et al. 1991). The consequences of
using this averaging procedure in ABL simulations are
discussed in section 8.

The Smagorinsky model for the subgrid-scale flux of
potential temperature 
*l is written as

	� l
* � ��0C�
2|D̃|

��̃*l
�xj

CB. �44�

Applying the dynamic procedure outlined above to the
equation for conservation of potential temperature
[Eq. (3)] gives an analogous equation for the model
coefficient:

C�
2 � �
�FjEj�

�FkFk�
, �45�

where the resolved flux Ej is given by

Ej � �̃*l ũ
^

j �
ˆ
�̃*l û̃j, �46�

and

Fj � �2| ˆ
D̃|

�
ˆ
�̃*l

�xj
ĈB � |D̃|

��̂*l
�xj

CB

^
. �47�

The model for the SGS flux of qt is identical, with 
*l
replaced by qt.

In the following sections we present and discuss re-
sults obtained using the models described above. We
will refer to the models using the following abbrevia-
tions: SM—Smagorinsky model with Lilly stability cor-
rection, SMD—Smagorinsky model with Lilly stability
correction and additional stability correction of Dear-
dorff, and DSM—dynamic Smagorinsky model (also in-
cludes Lilly stability correction).

5. Modeling near-surface turbulence

Modeling turbulence in the region close to the sur-
face presents a challenge for both dynamic and nondy-
namic SGS models. At high Reynolds numbers, accord-
ing to Prandtl’s mixing length hypothesis, the size of the
energetic eddies is proportional to the distance from a
solid boundary. It is inevitable that below some height,
these energetic eddies will no longer be resolved by the
grid. This is a fundamental problem for the LES tech-
nique itself, since the theoretical foundations of the ap-
proach are based on the assumption that the large, en-
ergetic eddies are resolved and only the small dissipa-
tive scales need to be modeled. Because the small scales
of turbulence tend to be isotropic and dissipative, a
relatively simple turbulence model is generally consid-
ered to be adequate to parameterize their effects on the
resolved motions. This is in contrast to Reynolds stress
or “RANS” models, which are formulated for use with
the Reynolds-averaged Navier–Stokes equations.
These models tend to be considerably more complex
than LES models because they attempt to parameterize
all the scales of turbulence. LES subgrid-scale models,
such as the Smagorinsky model, cannot be expected to

532 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



accurately parameterize turbulence when the energetic
scales of turbulence are not well resolved.

A number of researchers have proposed approaches
aimed at addressing this problem. In 1975, Schumann
(1975) developed a model that behaved like an LES
model in the outer layer and a RANS model close to
the wall. In 1992 Mason and Thomson (1992) proposed
a stochastic backscatter model, which attempts to in-
clude the effects of the spectral backscatter of energy
from small to large scales that has been found to occur
in poorly resolved regions of flow. Sullivan et al. (1994)
suggested a hybrid LES–RANS model similar to that of
Schumann. Their model aims to include the effects of
anisotropy observed in turbulent flow fields close to
solid surfaces. In the same year, Mason (1994) sug-
gested using a damping function to reduce the model
length scale near the surface. Kosović (1997) proposed
a nonlinear model that aims to address both the issues
of anisotropy and backscatter.

For the nondynamic Smagorinsky models, SM and
SMD, we use the approach of Mason (1994) mentioned
above. The model length scale is modified in the region
close to the surface using a damping function,

1


*2 �
1


2 � � cs

kz�2

, �48�

where k is the von Kàrmàn constant. With the dynamic
model, a modification such as this is not appropriate,
since the quantity calculated by the dynamic procedure
is C�2, which includes the length scale � [see Eq. (40)].
Some form of modification is necessary, however, as
the dynamic model in its standard form tends to give
insufficient SGS diffusion in the near-surface region.

Evidence of this is seen in Fig. 1, which shows vertical
profiles of the eddy viscosity Km and the total shear
stress �uw� obtained with the dynamic Smagorinsky
model (DSM) and the nondynamic Smagorinsky model

with Deardorff correction (SMD). The total shear
stress is the sum of the resolved and subgrid-scale shear
stresses in the predominant wind direction and is nor-
malized by the mean surface shear stress u2

*. All results
in this section are for simulations performed on the
96 � 96 � 128 cell grid with statistics averaged over
horizontal planes and over the time period t � 2–4 h.

Above 100 m, the profiles of eddy viscosity calcu-
lated by DSM and SMD are similar. Below this height,
however, the two models diverge markedly. As the sur-
face is approached, the eddy viscosity calculated by
DSM approaches zero while that calculated by SMD
increases to a value more than 2 times that seen in the
remainder of the boundary layer. An increase in eddy
viscosity is expected in this region, as more of the tur-
bulence energy is contained in the subgrid scales. Thus
it appears that close to the surface DSM is outside its
range of applicability. As with the SGS models them-
selves, the dynamic procedure is based on the assump-
tion that the energetic scales of turbulence are well
resolved. Since this assumption is not valid in the near-
surface layer, the dynamic procedure does not accu-
rately calculate the model coefficient in this region.
This is in accordance with the findings of other inves-
tigators (cf. Porté-Agel et al. 2000; Cederwall 2002;
Chow et al. 2005).

A consequence of the poor representation of the
near-surface turbulence by DSM is seen in the shear
stress profile in Fig. 1. The boundary layer in this simu-
lation is well mixed, so the primary force balance is
between the turbulent stresses and the large-scale, hori-
zontal pressure gradient. We therefore expect the shear
stress to follow an approximately linear profile going
from u2

* at the surface to zero at the inversion. (A small
deviation from the linear profile is expected because of
the effects of the Coriolis acceleration.) The SMD
simulation gives a good approximation to this expected

FIG. 1. Profiles of (left) eddy viscosity and (right) total shear stress for standard DSM (solid line) and SMD
(dotted line).
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profile. The DSM simulation, on the other hand, dras-
tically underpredicts the stress throughout the bound-
ary layer, and gives a large “wiggle” close to the sur-
face. These errors are due to the fact that the model is
not transferring sufficient momentum across the near-
surface layer.

One possible approach to resolving this problem is to
use a modified form of the dynamic procedure to cal-
culate the Smagorinsky model coefficient. An example
of this is the scale-dependent dynamic model of Porté-
Agel et al. (2000). Results obtained with this model
indicate that it calculates the Smagorinsky coefficient
more accurately in poorly resolved regions such as the
near-surface layer. An alternative and simpler ap-
proach adopted by Cederwall (2002) is to combine the
standard dynamic model with a separate “near-surface
model” that is specifically designed to parameterize the
subgrid-scale fluxes close to the surface. This approach
is appealing because it uses the dynamic Smagorinsky
model only where the assumptions implicit in its deri-
vation are valid, namely, away from the surface. We
have adopted a similar approach here.

The near-surface model used by Cederwall is based
on a model originally proposed by Brown et al. (2001)
for LES of a laboratory-scale rough wall boundary
layer. Brown et al. used the Smagorinsky model with
stochastic backscatter of Mason and Thomson (1992) as
the base SGS model. To provide additional SGS mo-
mentum transfer across the near-surface region, they
added a “canopy stress” of the form

�c � �� Cca�z��0|u|ui dz. �49�

Here, |u| is the horizontal wind speed and Cca(z) rep-
resents a canopy density function, which has units of
area divided by volume. Brown et al. used a canopy
density function in which a(z) � cos2(�z/2hc) for z �

hc, where hc is the height of the canopy, and a(z) � 0 for
z � hc. The canopy height was based on the geometry
of the wire mesh used as a roughening device on the
surface of the wind tunnel. They set Cc empirically so
that the mean velocity at the top of the canopy matched
the experimental data. The constant of integration is set
such that �c � 0 at the top of the near-surface region.
Using this model, Brown et al. obtained numerical re-
sults that are in close agreement with the expected loga-
rithmic-law velocity profile near the surface.

Cederwall (2002) adapted the canopy stress model
for use in combination with the dynamic Smagorinsky
model. In place of the cos2 profile, Cederwall used a
cos3 profile. This was found to be sufficient to ensure a
smooth transition between the well-resolved region and

the near-surface layer. Also, rather than tuning the
model coefficient Cc to give the expected velocity pro-
file, this coefficient is calculated dynamically, such that
the total stress at the first grid point above the wall is
equal to the local wall shear stress u2

*. This is consistent
with the fact that, when the dynamic Smagorinsky
model is used, both resolved and SGS shear stresses
approach zero at the surface. Last, Cederwall sets the
canopy height equal to the horizontal grid spacing hc �
�x, which is assumed to be representative of the scale of
the smallest resolved eddies. Cederwall tested this com-
bination of near-surface and dynamic model in simula-
tions of the neutral ABL and found that it gives a very
good prediction of the log-law velocity profile in the
surface layer.

Recently Chow et al. (2005) followed the work of
Cederwall but combined the near-surface model with a
more complex dynamic SGS model developed using an
explicit filtering approach. They also ran simulations of
the neutral ABL and again found that this combination
of near-surface and dynamic models gives excellent
prediction of the log-law velocity profile in the surface
layer.

In this paper we also follow the formulation of Ce-
derwall with one modification. We set the canopy
height to be hc � 2(�x�y�z1)1/3, where �z1 is the height
of the cells in the bottom layer of the grid. The length
scale 2(�x�y�z)1/3 is frequently used in LES as an ap-
proximation for the size of the smallest resolved eddies
(Scotti et al. 1997) and has the advantage that it takes
into account the spatial resolution in all directions. It is
also the same as the length scale 2� used to represent
the filter width in our application of the Smagorinsky
model. (In the Smagorinsky model, the factor of 2 is
absorbed into the model coefficient.) In the analogous
models for potential temperature and water, |u| in Eq.
(49) is replaced by 
*l and qt, respectively.

Figure 2 shows a comparison of shear stress profiles
obtained with DSM and SMD, similar to that shown in
Fig. 1. This time, however, the DSM simulation uses the
near-surface model. The large wiggle seen in Fig. 1 is
almost gone, and the DSM simulation now gives a good
approximation to the expected linear stress profile, in-
dicating that the combined model is giving a realistic
representation of the fluxes through the near-surface
layer. (We believe that the small wiggle seen in the
results for both SMD and DSM is artificial and is due to
the fact that the analysis does not include fluxes intro-
duced by the numerical method.)

Figure 3 shows the total shear stress �uw� and the
three components that combine to produce it—namely,
the resolved shear stress �ũw̃�, SGS shear stress �13, and
the canopy stress �c generated by the near-surface
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model. Results are plotted on a semilogarithmic graph
to highlight the behavior of the various components
close to the surface. The resolved stress increases from
zero at the top of the boundary layer to a peak at a

height of approximately 30 m. It then decreases rapidly
as the surface is approached. The height of 30 m cor-
responds closely to 2� � 33.3 m, thus supporting our
argument that 2� is an appropriate scale for the canopy

FIG. 2. Profiles of total shear stress normalized by u2
*: DSM (solid line) and SMD (dotted line).

FIG. 3. Profiles of normalized total shear stress �uw�, resolved shear stress �ũw̃�, SGS shear stress ��13�, and
surface layer stress ��c� for DSM with the near-surface model.
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height. The canopy stress is seen to increase from zero
at hc � 2� � 33 m to a value equal to the wall shear
stress u2

* at the first node. The SGS stress bridges the
remaining gap between the resolved stress and the
canopy stress, reaching a peak at a height of approxi-
mately 25 m. The combined effect is to give a smooth
transition between the boundary conditions applied at
the surface and the well-resolved region of the flow.

6. Comparison with observational measurements

In this section we compare results obtained using the
three SGS turbulence models described in section 4: the
standard nondynamic SM, the nondynamic SMD, and
our adapted version of the DSM, which also includes
the Lilly stability correction. The nondynamic models
use a constant model coefficient of cs � C1/2 � 0.18 and
a constant Prandtl number of Prt � 0.4. The DSM simu-
lation also uses the near-surface model described in the
previous section.

The simulations are of the DYCOMS-II RF01 case
described in section 2. During the first hour of simula-
tion time, the numerical model “spins up” from the
artificial initial conditions to a fully developed turbu-
lent state. It is conceivable that the results during later
times may be affected by the response of the SGS mod-
els to the artificial conditions during spinup. As we are
interested only in how the SGS models function within
a developed turbulent flow field, we run the first hour
of all simulations with the SGS models turned off. The
near-surface model is switched on during this spinup
period to ensure that realistic fluxes are maintained
through the near-surface region. The solution at t � 1 h
then provides initial conditions for the simulations us-
ing the different SGS models, which are integrated over
the remaining 3 h. The results presented in this section
were calculated using the 96 � 96 � 128 grid. Each
simulation took approximately 4 h to run on 16 nodes
of an Origin 3000 supercomputer at the National Aero-
nautics and Space Administration (NASA) Ames Re-
search Center. The extra computational cost incurred
when the dynamic model is used is typically 15%–20%.

Figure 4 shows time series of inversion height zinv,
cloud-base height zbase, liquid water path (LWP), and
cloud fraction obtained with each model. (Here zinv is
defined as the height of the 8.0 g kg�1 isoline of qt.) The
entrainment rate E is calculated as

E �
dzinv

dt
� wsub. �50�

Here, dzinv/dt is calculated as the average rate of change
of dzinv over the period t � 2–4 h. The subsidence ve-
locity wsub is �zinv (also averaged over t � 2–4 h) mul-

tiplied by the large-scale divergence, which for this case
was prescribed to be 3.75 � 10�6 s�1 (see Stevens et al.
2005). Table 2 shows the entrainment rate calculated as
described above, along with the zbase, cloud fraction,
and LWP averaged over t � 3–4 h for the four models.
The model results are compared with estimates ob-
tained from the field measurements.

Overall the results for the DSM simulation are con-
siderably closer to the observations for each parameter
than are the results for the SM and SMD simulations.
The entrainment rate of 0.44 cm s�1 calculated by DSM
is relatively close to the measured value of 0.38 � 0.1
cm s�1, as compared with the entrainment rates of 0.48
and 0.51 cm s�1 calculated by SMD and SM, respec-

FIG. 4. Time series of (from top to bottom) inversion height,
cloud-base height, cloud fraction, and LWP: DSM (solid line),
SMD (dashed line), and SM (dotted line).

TABLE 2. Bulk parameters for the three models compared with
the observations. Observational measurements are as shown in
Stevens et al. (2003b).

Measured value DSM SMD SM

E (cm s�1) 0.38 � 0.1 0.44 0.48 0.51
zbase (m) 600 630 650 680
Cloud fraction (%) �99 99.7 99.6 95.7
LWP (g m�2) 62 54 46 34
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tively. These differences in entrainment rate are re-
flected in the results for the other three bulk param-
eters. DSM, with the lowest entrainment rate, calcu-
lates the lowest cloud-base height, the highest cloud
fraction, and the highest LWP. At the other end of the
scale, SM calculates the highest entrainment rate, and
has the highest cloud-base height, lowest cloud fraction,
and lowest LWP. The results for SMD lie between
these two extremes.

Figure 5 shows profiles of the mean state variables
and vertical velocity statistics for each model, overlayed
with the observational data. All statistics presented

here and below are averaged over the final 2 h, that is
for t � 2–4 h. The profiles obtained with DSM and
SMD for the mean state variables, 
l, qt, and qc, are in
good agreement with the observations. The SM simu-
lation calculates a drier cloud, with qc reduced by 20%–
25% when compared with the other models. A similar
trend is seen in the profile of resolved buoyancy pro-
duction Bprod, which is also lower in the cloud layer for
the SM simulation.

A larger variation in results is seen in the profiles of
the vertical velocity statistics. For the second moment
�w̃2�, DSM again gives the best agreement with the ob-

FIG. 5. Profiles of liquid water potential temperature, total water, condensed water, resolved buoyancy produc-
tion, and the second and third moments of the resolved vertical velocity: DSM (solid line), SMD (dashed line), and
SM (dotted line). Markers indicate in situ (diamond) and radar (triangle) measurements.
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servations, lying within the error bars of the in situ
measurements everywhere except at the lower two data
points. [This discrepancy at the lower two data points
was common to all the models in the GCSS intercom-
parison described by Stevens et al. (2005).] SMD gives
a �w̃2� profile that is also in reasonable qualitative
agreement with the observations but underpredicts the
values slightly. The SM on the other hand, underpre-
dicts �w̃2� by approximately 50% and calculates a two-
peaked profile with a local minimum at cloud base,
rather than the single-peaked profiles seen in the ob-
servations and the DSM and SMD results. A similar
trend is seen in the third-moment profiles. The �w̃3�
profiles for DSM and SMD are both in good agreement
with the in situ measurements, while the profile calcu-
lated by SM lies well to the right of the observations.
We discuss the reasons for these differences below.

A clear trend seen in these sounding results is the
large difference between the results for SM and those
for DSM and SMD. This is in contrast to the entrain-
ment rate results, for which SM is relatively close to
DSM and SMD. A similar trend is seen in the results for
the bulk parameters listed in Table 2. This indicates
that there is a critical entrainment rate somewhere be-
tween the entrainment rates calculated by SMD and
SM. Above this critical point a negative feedback
mechanism becomes active that tends to moderate any
further increase in entrainment rate. We would expect
such a critical point to be associated with a fundamental
change in the nature of the flow field.

Evidence of this change is seen in Fig. 6, which shows
profiles of the square of the buoyancy frequency N2 and
the total vertical flux of liquid water potential tempera-
ture �
lw�. These profiles show a significant difference
in the stability profile calculated by the SM simulation
relative to the profiles calculated by the other two mod-
els. While DSM and SMD calculate a cloud layer that is

unstable (N2 negative), the cloud layer calculated by
SM is stable (N2 positive).

The underlying cause of this difference in stability is
seen in the profiles of the vertical flux of liquid water
potential temperature. In the SM simulation, the direc-
tion of the 
l flux is downward throughout the cloud
layer, whereas, in the DSM and SMD simulations, the
direction of the flux is upward within the bulk of the
cloud layer, and downward only at cloud top. The di-
rection of the 
l flux depends on the balance between
the downward flux of warm air entrained across the
inversion and the upward flux due to radiative cooling
at cloud top. In the DSM and SMD simulations, this
balance remains in favor of radiative cooling, producing
an unstable cloud layer, whereas in the SM simulation,
drying of the cloud reduces cloud-top radiative cooling
tipping the balance in favor of a net downward flux and
producing a stable cloud layer. By damping vertical mo-
tions, this statically stable layer acts as a local negative
feedback mechanism that moderates further increases
in the entrainment rate.

The difference in stability also explains the difference
seen between the profiles of buoyancy production and
the vertical velocity statistics. The reduction in Bprod in
the SM simulation is due to a combination of the posi-
tive stability profile and drying of the cloud, which re-
duces the moisture available for evaporative cooling in
downdrafts and also reduces the rate of radiative cool-
ing at cloud top. Similarly, the single-peaked �w̃2� pro-
files seen in the results for DSM and SMD are typical of
a well-mixed, slightly unstable boundary layer, whereas
the attenuated, two-peaked �w̃2� profile seen in the SM
results indicates a less energetic boundary layer and
reduced mixing of the cloud and subcloud layers. These
effects are due again to the positive stability profile and
reduced buoyancy production that occur in the SM
simulation. In addition to the local negative feedback

FIG. 6. Profiles of (left) buoyancy frequency and (right) the total vertical flux of liquid water potential temperature
(normalized by the mean surface flux): DSM (solid line), SMD (dashed line), and SM (dotted line).
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mechanism described above, the less energetic bound-
ary layer–scale motions in the SM simulation (as indi-
cated by the attenuated �w̃2� profile) are also expected
to moderate entrainment (Stevens et al. 2005). The
reader is referred to the articles of Bretherton and Wy-
ant (1997) and Stevens (2000) for further discussion of
decoupling of stratocumulus-topped ABLs.

The S-shaped �w̃3� profiles produced by DSM and
SMD result when cooling at cloud top leads to nega-
tively buoyant downdrafts within the cloud layer that
are of similar strength to the positively buoyant up-
drafts generated at the sea surface. In the SM simula-
tion, the positive stability and reduced evaporative
cooling weaken the downdrafts in the cloud layer, so
that convective updrafts from the sea surface tend to
dominate. Consequently the �w̃3� profile is moved to
the right. The small region of positive �w̃3� seen at cloud
top is not seen in the radar data; however, it is seen in
the �w̃3� profiles of all the models in the GCSS inter-
comparison (Stevens et al. 2005). This discrepancy re-
quires further investigation.

7. Effects of spatial resolution

In this section we consider the spatial convergence
characteristics of each of the models. The role of an
SGS model is to parameterize the effects of the unre-
solved scales of motion on the solution for the resolved
scales. In this context, an ideal SGS model would en-
sure that the mean statistics and bulk parameters cal-
culated by the LES model are independent of spatial
resolution. To investigate the effects of spatial resolu-
tion, we repeated the simulations on a lower-resolution
grid (64 � 64 � 96) and a higher-resolution grid (128 �
128 � 172) and compared them with the results ob-
tained on the standard (96 � 96 � 128) grid. In each
case the resolution at the surface is the same as the
resolution at the inversion.

Figure 7 shows the variation with resolution of the
bulk parameters: E, zbase, cloud fraction, and LWP,
while Fig. 8 shows the variation in �w̃2� profiles. The
results for DSM show trends typical of a smoothly con-
verging model. The change in each parameter de-

FIG. 7. Variation of bulk parameters with spatial resolution. Here �min is the minimum filter size associated with each grid. (see Table 1).
Statistics are calculated in the same manner as they were for Table 2: DSM (solid line), SMD (dashed line), and SM (dotted line).
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creases as resolution is increased, with only a relatively
small change in results as the resolution is increased
from the standard to the high-resolution grid. These
results indicate that a high degree of resolution inde-
pendence has been achieved with DSM on the standard
grid. The results for DSM are also converging toward
values that are close to the observational results (see
Table 2).

The SM and SMD results for cloud fraction, LWP,
zbase, and �w̃2� are changing in the direction of the DSM
and observational results. In the case of LWP and zbase,
however, the change in results increases rather than
decreases as resolution is increased. The trends for en-
trainment rate are not clear, especially for the SM simu-
lations, which may be due to the fact that the SM simu-
lation is close to the critical entrainment rate discussed
above. Overall, the results indicate that the two nondy-
namic model simulations have not achieved the same
degree of resolution independence on the standard grid
as the DSM simulation. The results for SMD on the
standard and high-resolution grids are relatively close
to the DSM and observational results. In contrast, the
results for SM remain far from the observations even
on the high-resolution grid.

It is also important to verify the resolution indepen-

dence of the dynamic procedure itself. As discussed in
section 3, scale independence of the model coefficient is
critical for DSM to function correctly, since the dy-
namic procedure assumes the same coefficient can be
used at both the grid and test filter levels. Figure 9
shows the model coefficient calculated by DSM on the
low-resolution, standard, and high-resolution grids. The
near-surface layer shows some variation in the model
coefficient, as we expect based on the discussion in sec-
tion 5. Throughout the bulk of the boundary layer,
however, the profiles demonstrate a high degree of
resolution independence, especially for the standard
and high-resolution simulations.

As well as demonstrating grid independence, com-
parisons of spatial convergence curves with experimen-
tal results are useful in detecting the presence of any
significant oversights in the overall modeling of the sys-
tem. As stated in the introduction, the DYCOMS-II
field experiment was deliberately designed to provide
sufficient data to closely constrain LESs. While our
DSM results are generally close to the observations,
Fig. 7 shows the entrainment rate converging toward an
asymptotic value that is approximately 10% higher than
the measured value, while LWP is converging toward a
value approximately 10% lower than the observed

FIG. 8. Variation of the second moment of vertical velocity with spatial resolution for the three SGS models: 64
� 64 � 96 (dotted line), 96 � 96 � 128 (dashed line), and 128 � 128 � 172 (solid line).
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value. Assuming our numerical method is consistent (in
the sense that solution to the discretized equations ap-
proaches the solution of the continuous equations as
the size of the grid cells approaches zero), this discrep-
ancy is indicative of some significant form of modeling
error. A likely candidate is the absence of any model to
account for the effects of droplet sedimentation within
the cloud. For the present study we set conditions as
prescribed for the GCSS intercomparison (Stevens et
al. 2005) and so do not include the effects of droplet
sedimentation. In a separate study, however, Acker-
man et al. (2004) found that droplet sedimentation has
a significant effect in simulations of the DYCOMS-II

case, causing both an increase in LWP and a decrease in
entrainment.

8. Discussion

The results presented above show the DSM simula-
tion consistently giving significantly better agreement
with the field data than the simulations using the non-
dynamic models, and also giving better resolution in-
dependence. What are the key differences in the be-
havior of the dynamic model that enable it to give these
results?

Figure 10 shows a comparison of the eddy viscosity

FIG. 9. Variation with spatial resolution of the model coefficient C calculated by DSM (note
that C � c1/2

s ): 64 � 64 � 96 (dotted line), 96 � 96 � 128 (dashed line), and 128 � 128 � 172
(straight line).

FIG. 10. (left) Profiles of eddy viscosity for DSM (solid line), SMD (dashed line), and SM (dotted line). The
relative position of the inversion for each case is (right) indicated by the 
l profile.
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calculated by DSM, SMD, and SM. The relative posi-
tion of the inversion for each case is indicated by the 
l

profile. Throughout most of the boundary layer, the
eddy viscosity calculated by DSM is very similar to that
calculated by SMD and SM. On reflection, this similar-
ity is remarkable considering the different ways in
which the model coefficient is calculated in each case.
As described in section 4, SMD and SM use fixed
model coefficients that are derived from physical argu-
ments based on turbulence theory and from field mea-
surements. DSM, on the other hand, calculates the
model coefficients dynamically during the simulation
itself from information contained in the resolved flow
fields. This fact, when combined with the results in the
previous sections, is strong evidence that DSM is func-
tioning correctly throughout the bulk of the boundary
layer.

There are two regions in which the eddy viscosity
profiles calculated by the three models differ signifi-
cantly: in the near-surface region and at cloud top. In
the near-surface region the eddy viscosity calculated by
DSM approaches zero as the surface is approached,
leading to unrealistically low fluxes across the near-
surface layer. In section 5 we argued that DSM could
not be expected to perform well in this region because
the turbulence is poorly resolved and so the model is
outside its range of applicability. Consequently, we
supplemented the dynamic SGS model with a near-
surface model in order to ensure that realistic fluxes are
maintained across this layer.

At cloud top, the profiles show two obvious differ-
ences between the eddy viscosity calculated by DSM
and that calculated by the nondynamic models. The
first is that DSM calculates a higher eddy viscosity at
cloud top. The second is that the eddy viscosity profile
calculated by DSM approaches zero just below the in-
version, whereas the profiles calculated by SM and
SMD approach zero just within the inversion. Both of
these factors are expected to contribute to the lower
entrainment rate calculated by DSM. A higher eddy
viscosity at cloud top damps in particular the smaller-
scale resolved motions in this region, hence reducing
the kinetic energy available in these eddies for entrain-
ment. A lower eddy viscosity and eddy diffusivity
within the inversion, on the other hand, reduce entrain-
ment directly, by decreasing the SGS transport across
the inversion. As we have seen, an accurate calculation
of the entrainment rate appears to be a critical factor in
achieving close agreement with the observations for the
other statistics. Consequently, these differences in the
behavior of the SGS models at cloud top play an im-
portant role in determining the overall results of each
simulation.

Considering the two mechanisms outlined above in
the context of the SM and SMD results presented here,
we note that SM gives a lower eddy viscosity than SMD
both within the inversion and at cloud top and yet gives
a higher entrainment rate. This would seem to indicate
that it is in fact the first mechanism that is more impor-
tant in this case. That is, the lower eddy viscosity cal-
culated by SM at cloud top leads to higher resolved
TKE in this region, which results in more rapid entrain-
ment. This argument may be oversimplistic, however,
since it is based on comparisons of profiles generated
by averaging over time and space, whereas the buoy-
ancy corrections that actually cause the differences act
locally. A further complication here results from the
negative feedback loops discussed in section 6 whereby
increased entrainment in the SM simulation leads to a
cloud layer that is statically stable. This statically stable
layer damps resolved vertical motions, while also caus-
ing a reduction in the eddy viscosity via the buoyancy
correction term in the SM model.

We focus now on the second mechanism, whereby
the eddy viscosity calculated by DSM drops to zero just
below the inversion. A clear trend seen in the GCSS
model intercomparison for the DYCOMS-II case
(Stevens et al. 2005) was that the models that gave the
best agreement with the observations used an SGS pa-
rameterization that, either through design or through a
posteriori modification, gave zero SGS flux within the
inversion. The DHARMA simulations using DSM
were consistently closer to the observations than all
except one of the other models. In that model the sub-
grid fluxes of scalar variables were manually switched
off to test the importance of this effect. These findings
raise an intriguing question about the physical pro-
cesses associated with entrainment for this case. How
can we simultaneously argue that all the flux across the
inversion is being carried by the resolved scales, while
at the same time argue that the eddy size is so small that
it warrants turning off the SGS model?

One possible answer to this is that small eddy trans-
port does in fact contribute significantly to the entrain-
ment process for this case; however, in the simulations
this transport is already adequately “parameterized” by
the extra numerical diffusion associated with the mono-
tone advection scheme used for the scalar variables.
Thus, an SGS model that switches off in the entrain-
ment layer is actually compensating fortuitously for ex-
cessive numerical diffusion.

A more interesting possibility, at least from a physi-
cal perspective, is that the dominant entrainment
mechanism transport for this case is in fact one in which
the resolved motions are primarily responsible for en-
trainment and that gradient transport by small eddies,
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which forms the basis for eddy viscosity–based SGS
parameterizations, is negligible. Support for this hy-
pothesis is provided by the work of Fernando and Hunt
(1997) and McGrath et al. (1997) who performed theo-
retical and experimental studies of entrainment mecha-
nisms at shear-free density interfaces. They found that
when the bulk Richardson number Rib is greater than
15, the dominant entrainment mechanism involves the
generation of internal waves within the inversion by
eddies impinging on the interface. Under certain cir-
cumstances the internal waves overturn and “break.”
The resulting local static instability then generates tur-
bulent mixing that is responsible for entrainment. For
bulk Richardson numbers significantly higher than 15,
they found that entrainment is due almost exclusively
to this breaking wave mechanism. The bulk Richardson
number is defined as Rib � �bLh/u2

h, where �b is the
buoyancy jump, Lh is the integral length scale of the
turbulence, and uh is the integral velocity scale.

We argue that the situation at cloud top in the
DYCOMS-II case is very similar to the situation ana-
lyzed by Fernando and Hunt (1997) and McGrath et al.
(1997). Turbulence production is predominantly due to
buoyancy production within the cloud rather than
shear. The case is also in the stable regime with regard
to thermodynamically driven instabilities associated
with the cloud-top entrainment instability (using the
criteria defined by MacVean and Mason 1990). One of
the characteristics of the DYCOMS-II case is the
strength of the inversion, with a potential temperature
jump of approximately 12 K, giving a buoyancy jump of
approximately 0.3 m s�2. The integral length scale for
eddies within the cloud layer is of the order of 100 m,
while, from inspection of the LES velocity fields, the
integral velocity scale is of the order of 1 m s�1. This
gives a bulk Richardson number on the order of 30. We
therefore expect the wave-breaking mechanism de-
scribed above to be the dominant mode of entrainment
for this case. This mechanism is characterized by propa-
gating internal waves and isolated breaking events,
both of which can only be represented in the resolved
component of the simulations. Gradient diffusion in
nonoverturning regions of the interface does not con-
tribute significantly to entrainment.

We conclude that, for the DYCOMS-II case, an SGS
model that “switches off” subgrid-scale fluxes at the
inversion is probably acting in accordance with the
physics of the entrainment process. While DSM gives
this behavior, this does not prove that it is doing so for
the right reason. A similar tendency to switch off SGS
fluxes is also seen in the near-surface region where it
has been found to have a detrimental effect on the
simulation.

A more critical test case is required to address this
issue. Such a case was investigated by Kirkpatrick and
Armfield (2005), who compared experimental and LES
results for a purging cavity flow in which the bulk Ri-
chardson number was much lower (of order unity). In
this case saltwater is purged from a cavity by an over-
flow of freshwater. During the later stages of the purg-
ing process, when the density interface is low in the
cavity, entrainment is also driven by large eddies im-
pinging on the interface from above and deforming the
interface. In this case, however, because of the lower
buoyancy jump, dense fluid is ejected from the deform-
ing interface in the form of wispy streamers. This so-
called eddy-impingement mechanism was first sug-
gested by Linden (1973) and was also identified by
McGrath et al. (1997), who found that it is the domi-
nant entrainment mechanism for cases with a bulk Ri-
chardson number of less than 15. Based on a compari-
son of experimental and LES results for the purging
flow, Kirkpatrick and Armfield (2005) suggested that,
in addition to the large energetic eddies that deform the
interface, smaller eddies close to the interface must also
play an important role in the eddy-impingement en-
trainment mechanism and may be responsible for the
generation of the streamers. When a large eddy de-
forms the interface, there are typically regions where
the interface is close to vertical. In these regions the
motion of small eddies across the interface is no longer
inhibited by buoyancy forces, so these eddies are able
to contribute to the entrainment process. Since the
small eddies responsible for this mode of interfacial
transport typically fall below the grid resolution they
need to be parameterized by the SGS model. In the
simulation, however, DSM showed similar behavior to
that seen in the DYCOMS-II case, calculating minimal
SGS fluxes at the interface. This led to a significant
underprediction of the entrainment rate for the purging
cavity flow.

From inspection of the LES results for the purging
flow, Kirkpatrick and Armfield (2005) found that the
dynamic procedure tends to predict negative values for
the model coefficient on the nonturbulent side of the
interface and positive values on the turbulent side.
When the model coefficient is averaged over a horizon-
tal plane that cuts through the deforming interface, the
plane will typically include regions that are both above
and below the interface, so that negative and positive
values for the model coefficient tend to cancel out. The
result of this is that the model coefficient approaches
zero close to the interface. The authors noted that the
plane-averaging procedure used to stabilize the dy-
namic procedure is usually justified based on an as-
sumption of homogeneous turbulence. This assumption
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is not valid on a plane that intersects a deforming in-
terface, since the plane will contain zones of both non-
turbulent flow and turbulent flow. This issue could be
addressed relatively easily by using a localized dynamic
model, such as the model of Piomelli and Liu (1995).
An adapted version of this model is included in the
LLAMA module (see Kirkpatrick et al. 2003) but has
yet to be thoroughly tested.

It also seems likely, however, that the behavior of
DSM at interfaces is a symptom of a more fundamental
problem associated with insufficient resolution of the
energetic eddies in these regions. This issue also has
serious implications for nondynamic SGS models since,
as stated previously, the basic assumption underlying
the dynamic SGS model is essentially the same as that
underlying all SGS models—namely, that the energetic
scales of turbulence are well resolved. If the dynamic
model is out of its range of applicability, then so too are
all other SGS models.

9. Conclusions

In this paper, we have presented an adaptation of the
dynamic Smagorinsky model for simulations of the
cloud-topped atmospheric boundary layer. The
adapted model accounts for buoyancy effects, vertical
density stratification, and poor resolution close to the
surface. It also calculates additional model coefficients
for the subgrid-scale fluxes of liquid water potential
temperature and total water mixing ratio. We have
compared the adapted dynamic SGS model with two
commonly used nondynamic SGS models for the
DYCOMS-II RF01 case.

The dynamic model, DSM, performs significantly
better than both of the nondynamic models, giving the
closest agreement with the observations for all of the
measured statistics. Of the nondynamic models tested
in the present work, the Smagorinsky model with addi-
tional Deardorff stability correction, SMD, performs
better than the standard Smagorinsky model, SM,
which consistently gives relatively poor agreement with
the observations. The critical feature of this case ap-
pears to be an accurate calculation of the entrainment
rate. Excessive entrainment leads to drying of the
cloud, which in turn reduces the rate of radiative cool-
ing. In the SM simulation, this effect is strong enough to
cause the development of a statically stable profile
within the cloud layer, whereas both the DSM and
SMD simulations maintain unstable conditions. We
have suggested that a stable cloud layer provides a local
negative feedback on entrainment by damping the ver-
tical motions of eddies in the cloud-top region. Drying
of the cloud in the SM simulation also leads to a less

energetic boundary layer overall, which further moder-
ates the entrainment rate by reducing the energy of the
boundary layer–scale eddies. In the SMD simulation,
the entrainment rate is also higher than the observed
entrainment rate, however, the cloud layer remains
statically unstable. Consequently, the SMD results for
other statistics are considerably closer to the field data
and to the results of the DSM simulation.

The difference in the entrainment rates calculated by
the three models is related in particular to their behav-
ior in the cloud-top region. Close to cloud top, DSM
calculates the highest eddy viscosity, followed by SMD
and then SM. Higher eddy viscosity causes greater
damping of the resolved motions, reducing the kinetic
energy available in the resolved eddies for the entrain-
ment. A second difference between the dynamic and
nondynamic models in this region is that the eddy vis-
cosity profile calculated by DSM approaches zero just
below the inversion, whereas the profiles calculated by
SM and SMD approach zero just within the inversion.
Therefore, SM and SMD are expected to give greater
subgrid-scale mixing at the inversion, which also con-
tributes to the higher entrainment rate seen with these
models. We have drawn upon the theoretical and ex-
perimental results of Fernando and Hunt (1997) and
McGrath et al. (1997) to argue that, because of the
large buoyancy jump at the inversion, entrainment in
the DYCOMS-II case is expected to be due primarily to
breaking internal waves and hence that gradient-
diffusion SGS models should indeed switch off subgrid-
scale fluxes at the inversion.

This does not, however, prove that DSM is doing the
right thing for the right reason. The DYCOMS-II re-
sults were compared with the results of Kirkpatrick and
Armfield (2005), who tested DSM for a case with lower
Richardson number. This is a more critical test case for
DSM, since entrainment here is due to a different
mechanism in which SGS mixing is expected to make a
significant contribution to the entrainment. Thus, the
subgrid model should predict significant SGS fluxes
across the interface. DSM, however, exhibited similar
behavior to that seen in the DYCOMS-II case, and
consequently gave an underprediction of the entrain-
ment rate.

Kirkpatrick and Armfield (2005) suggested that the
tendency for DSM to calculate minimal SGS fluxes at
an interface is due, at least in part, to the plane aver-
aging used to stabilize the model. The authors noted
that this averaging procedure is not valid on a plane
that intersects a deforming interface as the plane will
contain zones of both nonturbulent and turbulent flow.
A more serious problem, however, may be that DSM
switches off SGS fluxes as a result of insufficient reso-
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lution of the energetic scales of turbulence in these re-
gions. This also has implications for nondynamic SGS
models, since their derivations are typically based on
the same assumptions as those underlying the dynamic
procedure.

The original concept of large-eddy simulation was
that if one can provide sufficient resolution to ensure
that the cutoff wavenumber lies in the inertial sub-
range, only the dissipative scales of turbulence need to
be parameterized. Consequently only a relatively
simple subgrid-scale turbulence model would be re-
quired. This theory has been shown to be valid through
countless investigations, with good results obtained us-
ing the simplest models such as the classical Smagorin-
sky model, as long as there is adequate resolution. The
fundamental problem, however, is that in the vast ma-
jority of cases of practical importance, whether they be
engineering or environmental flows, there are regions
of the domain where it is not possible to provide
enough resolution to ensure that the energetic scales of
turbulence are adequately resolved. In other words the
original assumption of LES in these regions is not valid.

Despite this, the vast majority of work in the LES
field has focused on developing more and more com-
plex models that continue to assume a cutoff wavenum-
ber in the inertial subrange. Consequently, while these
new models show some improvements in predicting
higher-order statistics in well-resolved turbulence they
continue to fail dismally in regions such as the near-
surface region and the entrainment layer. Here they
either require ad hoc modifications or need to be com-
bined with extra models in order to achieve acceptable
results for even first-order statistics.

We believe future research should recognize that,
contrary to the original LES concept, SGS models de-
veloped for practical applications need to have inherent
in their design the capability to parameterize all scales
of turbulence. They must adapt from parameterizing
just the dissipative scales in well-resolved regions of the
flow, up to parameterizing the full turbulence spectrum
in poorly resolved regions. Clearly this requires a com-
pletely fresh approach to model development. We sug-
gest that the critical feature of this “new generation” of
SGS models be that they are based on the assumption
that the cutoff wavenumber might lie anywhere in the
turbulence spectrum.
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